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We have searched for exclusive �� production in proton-antiproton collisions at
���

s
p
� 1:96 TeV, using

532 pb�1 of integrated luminosity taken by the run II Collider Detector at Fermilab. The event signature
requires two electromagnetic showers, each with transverse energy ET > 5 GeV and pseudorapidity j�j<
1:0, with no other particles detected in the event. Three candidate events are observed. We discuss the
consistency of the three events with ��, �0�0, or �� production. The probability that other processes
fluctuate to � 3 events is 1:7� 10�4. An upper limit on the cross section of p �p! p� ��� �p
production is set at 410 fb with 95% confidence level.

DOI: 10.1103/PhysRevLett.99.242002 PACS numbers: 13.85.Qk, 13.85.Rm, 14.80.Bn

We have searched for the ‘‘exclusive’’ process p� �p!
p� ��� �p in the Collider Detector at Fermilab, CDF II,
at

���

s
p
� 1:96 TeV. Exclusive means that no other particles

are produced; in our study the p and �p emerge intact with
small transverse momenta pT [1] and the two photons are
central with pseudorapidity, j�j< 1:0. An exclusive ��
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event can be produced via gg! �� through a quark loop,
with an additional ‘‘screening’’ gluon exchanged to cancel
the color of the interacting gluons, and so allow the leading
hadrons to stay intact, as shown in Fig. 1. This process
offers a novel possibility to test QCD and is closely related
[2–5] to exclusive Higgs boson [6] production at the LHC
p� p! p�H � p, where the production mechanism of
the Higgs boson is gg fusion through a top quark loop. In
both cases the final state, �� or H, is not strongly interact-
ing, and thus the QCD calculation of both diagrams is
similar. However, the calculation is difficult as the screen-
ing gluon has low Q2, and other nonperturbative interac-
tions in the same p �p collision could produce additional
particles. Calculations for exclusive Higgs boson produc-
tion have been made using a variety of models, but these
predictions cover a range of over 2 orders of magnitude
[4,5]. Since the QCD part of the calculation is the same for
H and �� production, and only the calculable matrix
elements gg! �� and gg! H are different, exclusive
�� production provides an excellent test of the theoretical
predictions for H production. For exclusive production of
two photons, each with transverse energy [1] E�T > 5 GeV
and pseudorapidity j��j< 1, the only predicted cross sec-
tions [3] are 36 fb at the Tevatron, at

���

s
p
� 1:96 TeV, and

200 fb at the LHC. The same authors predict ��p� p!
p�H � p� � 3 fb at the LHC for a standard model Higgs
boson with MH � 120–140 GeV=c2, claiming a factor of
about three uncertainty for both processes. However, an
next-to-leading order calculation has not been done, and so
these uncertainties are difficult to estimate.

Processes other than gg! �� can produce an exclusive
�� final state. Contributions from q �q! �� and ��! ��
are, respectively, <5% and <1% of gg! �� [3]. The
dominant backgrounds to the observation of exclusive ��
events are the production of �0�0 or ��, with each meson
decaying to two photons. No theoretical calculation of
exclusive �0�0 or �� production has been published;
however, both cross sections are estimated [7] to be about

25% of the diphoton process, in the kinematic range of this
study.

This Letter presents the first search for exclusive ��
production in hadronic interactions. We use 532 pb�1 in-
tegrated luminosity of p �p collisions at

���

s
p
� 1:96 TeV

delivered to the CDF II detector at the Tevatron. The
CDF II detector is a general purpose detector described
elsewhere [8]; here we give a brief summary of the detector
components used in this analysis. Surrounding the beam
pipe is a tracking system consisting of a silicon microstrip
detector, a cylindrical drift chamber (COT), and a solenoid
providing a 1.4 Tesla magnetic field. The tracking system
has nearly 100% efficiency for reconstructing isolated
tracks with pT � 1 GeV=c and j�j< 1. It is surrounded
by the central and end-plug calorimeters covering the
range j�j< 3:6. Both calorimeters have separate electro-
magnetic and hadronic compartments. A proportional wire
chamber (CES) [9] is embedded in the central electromag-
netic calorimeter, j�j< 1:1, at a depth of six radiation
lengths. It allows a measurement of the number and shape,
in both transverse directions, of electromagnetic showers.
The anode wire pitch (in �) is 1.5 cm and the cathode strip
pitch varies with � from 1.7 cm to 2.0 cm. The CES
provides a means of distinguishing single photon showers
from �0 ! �� and �! ��. The region 3:6< j�j< 5:2
is covered by a lead-liquid scintillator calorimeter called
the miniplug [10]. At higher pseudorapidities, 5:4< j�j<
7:4, scintillation counters, called beam shower counters
(BSC), are located on each side of the CDF detector. Gas
Čerenkov detectors covering 3:7< j�j< 4:7 determine
the luminosity with a 6% uncertainty [11].

Exclusive �� production is modeled with the EXHUME

Monte Carlo generator [12], based on theoretical calcula-
tions [3,13]. Simulated single photons, and photons from
�0 and � decay, are passed through the GEANT [14] based
detector simulation [15] to determine their detection
efficiencies.

The event signature requires two electromagnetic show-
ers each with transverse energy ET > 5 GeV, with no other
particles detected in the full CDF detector, which covers
�7:4<�<�7:4. The outgoing proton and antiproton are
not detected. The event selection here follows closely that
described in Ref. [16] where, using the same trigger and a
similar analysis, we observed exclusive e�e� production.
The only differences are the tracking requirements, and we
restrict the j�j coverage from �2:0 to �1:0. The trigger
requires two electromagnetic clusters and no BSC counter-
activity in the region 5:4< j�j< 5:9. The measured cross
section for j�ej< 2:0 and peT � 5 GeV=c (for both e� and
e�) is 1:6�0:5

�0:3�stat� � 0:3�syst� pb (16 candidates with
1:9� 0:3 background), in agreement with the theoretical
QED cross section of 1:71� 0:01 pb. Assuming the theo-
retical cross section to be correct, this agreement is evi-
dence that the efficiency of the cuts we make to define
exclusive processes is well understood.

p

p

p

p

γ

γ

FIG. 1. The dominant diagram for central exclusive �� pro-
duction in p �p collisions. The primary process is gg! ��
through quark loops, with a screening gluon to cancel the
exchanged color.
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For the diphoton analysis we select events containing
two electromagnetic showers, each with ET > 5 GeV and
j�j< 1:0 and with a hadronic-to-electromagnetic energy
ratio <0:058, consistent with that of a photon. We require
either no tracks pointing to the showers or two adjacent
tracks consistent with a photon conversion (�! e�e�).
The efficiency for triggering, reconstructing, and identify-
ing a �� event with two photons each with E�T > 5 GeV
and j��j< 1 is 0:57� 0:07. Cosmic ray events are re-
jected by requiring that the time of each shower is consis-
tent with photons coming from a bunch crossing. The
efficiency of signal events to pass this cut is 0:93� 0:03.
We define ‘‘exclusivity’’ cuts that are designed to reject
events having any additional particles in the range j�j<
7:4 that are not associated with the � candidates; these cuts
require no additional energy deposits (‘‘particle signa-
tures’’) above noise thresholds in the calorimeters or the
BSC. We do not use track or CES information in this
selection. One particle can shower and cause several ‘‘sig-
natures.’’ We define the exclusivity cut efficiency "exc as
the probability that this exclusive requirement is not
spoiled by another inelastic interaction in the same bunch
crossing. It is measured, as explained in Ref. [16], as the
fraction of bunch crossing triggers that pass the exclusivity
cuts, which depends on the individual bunch-by-bunch
luminosities. We find "exc � 0:086� 0:001. The total ef-
ficiency is reduced by events that contain a photon conver-
sion or electron bremsstrahlung, which fail the exclusivity
requirements, estimated to be 0:87� 0:09 using the
EXHUME simulation. The probability of the scattered
p� �p� depositing energy in the BSC is negligible if their
pT is less than 1:2 GeV=c.

The total efficiency for all the above event selection
criteria, for the p� �p! p� ��� �p process, for photons
each with E�T > 5 GeV and j��j< 1, is 4:0� 0:7%. Three
events pass the selection criteria; their properties are given
in Table I. The ET values of the six electromagnetic
clusters are all between 5 and 7 GeV, and the azimuthal
opening angle between the two photon candidates is
���� � 2:9 rad, so the �� invariant mass exceeds

10 GeV=c2. The difference from ���� � � may be at-
tributed to the outgoing p and �p transverse momenta.

Five background sources to exclusive �� production are
considered: cosmic rays, exclusive e�e� events where
both electrons are misidentified as photons, nonexclusive
events in which additional particles do not leave a signa-
ture in the detector, ‘‘quasiexclusive’’ events where one or
both outgoing protons dissociate and the dissociation prod-
ucts are all very forward, beyond the detector coverage,
and exclusive �0�0 or �� production.

The cosmic ray background is determined to be negli-
gible from the distribution of the arrival time of electro-
magnetic showers. Cosmic rays are also expected to give
hits in the tracking detectors. However, a visual inspection
of the event displays shows only random noise hits in the
COT and the silicon detector for 5 of the 6 showers in
Table I. In the sixth case, shower B2, an e�e� pair from a
photon conversion is seen, with the sum of the two mo-
menta consistent with the calorimeter shower energy.

Dielectron events [16] could be misidentified as ��
events if both electron tracks are not reconstructed or the
electrons undergo energetic bremsstrahlung. This contri-
bution is estimated from Ref. [16] to be 0:02� 0:02 events.

Nonexclusive events, i.e., those with central particles in
addition to the two photons, may appear to be exclusive if
the additional particles are not detected through ineffi-
ciency. We study this by selecting events that contain two
photon candidates and no tracks in the tracking detectors
(other than conversion tracks), without other requirements
on the central and end-plug calorimeters. Only four events
in the data sample pass these criteria: the three candidates
with zero additional particle signatures, and one event with
13 signatures in the calorimeters. This background is esti-
mated to be 0:06� 0:03 events by using the same shape for
the distribution of additional particle signatures as in ex-
clusive e�e� events [16].

The proton dissociation background is small since all the
dissociation products must have j�j> 7:4 to escape detec-
tion in the BSC counters. There are also few excitation
states available to the proton due to spin restrictions on the
final state [13]. In Ref. [3] it was estimated that the disso-
ciation background is not expected to exceed	0:1% of the
exclusive signal sample, which corresponds to 
 0:01
events in the three-candidate sample. We take this back-
ground to be 0:01� 0:01 events.

Backgrounds can arise from exclusive pair production of
neutral mesons, i.e., �0�0 and ��. One photon from the
�0 or � decay can be undetected or, in the �0 case, the two
photon showers can merge. Exclusive �0� is suppressed
by isospin conservation, and �� ��0=�� is forbidden by
C-parity conservation. Production of �0�0 and �� cannot
be unambiguously distinguished from �� production on an
event-by-event basis. Since the cross sections are not well
known, these backgrounds cannot be directly calculated;
we discuss them later.

TABLE I. Properties of the calorimeter showers (S) of the
three candidate events: given are the ET , the � and � location,
the total number of CES clusters inside the same CES chamber,
NCES, and the �2

CES value (a shower shape variable, explained in
the text). Also given are the probabilities that a �0 and a photon
have a �2

CES value smaller than that observed.

Event S ET (GeV) ��;�� NCES �2
CES P��0� P���

A A1 6.8 �0:44; 6:11� 1 1.0 0.14 0.26
A2 5.9 �0:19; 2:83� 1 1.3 0.19 0.36

B B1 5.0 ��0:07; 4:86� 1 1.4 0.21 0.39
B2 5.4 �0:67; 1:66� 2 � � � � � � � � �

C C1 6.0 ��0:44; 1:66� 1 13.4 0.89 0.98
C2 5.1 �0:22; 5:05� 2 2.2 0.33 0.57
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We therefore observe three exclusive p� �p! p�
���=�0�0=��� � �p candidate events with a background
of 0:09� 0:04 events. The probability for three or more
events to be observed when 0:09� 0:04 (assumed to be the
mean and standard deviation of a gamma distribution) are
expected is 1:7� 10�4. We set an upper limit on the cross
section for exclusive �� production, taking into account
the background and its uncertainty, the signal selection
efficiency, and the integrated luminosity. A Bayesian ap-
proach is used assuming a flat prior for the cross section
and a gamma distribution for the uncertainties. This gives a
limit on the production cross section ��p� �p! p�
��� �p�< 410 fb (for E�T > 5 GeV, j��j< 1) at 95%
confidence level.

We now discuss the three candidate events as possible
��, �0�0, or �� production. The selection efficiency,
including exclusivity cuts, for a photon from an isolated
�0 ! �� is 13% lower than that of a direct photon, while
the selection efficiency for an isolated �! �� is 35%
lower. Relative to�0�0 production,�� detection is further
suppressed by a factor of 0.15, due to the branching frac-
tion for �! ��. We therefore treat the potential back-
ground as being predominantly �0�0.

We can only distinguish between single photons, and
photons from �0 decay, using the distribution of signals on
the CES strips and wires, in the module covering �� �
15� and j�j< 1:1, which contains the shower. CES clus-
ters are formed using 11 adjacent strips or wires. We may
observe two separate clusters, NCES � 2, from �0 decay. If
we observe a single cluster, NCES � 1, it could be from a
�0 if the two photon showers overlap or if one photon
shower is not detected. The number of CES clusters in the
three candidate events is shown in Table I. While only 12%
of photons have a second CES cluster, 28% (46%) of the
�0 (�) do. From simulation the probability that one photon
from �0=�! �� is not detected in the CES, by ranging
out or not interacting, is 0:125� 0:025. Single clusters
from photons or �0 can be distinguished statistically using
their shape. We use the distribution of pulse heights on the
wires and strips to form a variable, �2

CES, that compares the
lateral shape with that for an electron shower. A simulated
distribution of �2

CES for photons and �0’s is shown in
Fig. 2; it has a longer tail for �0’s than for photons, but it
does not allow an event-by-event separation. Using the
distributions in Fig. 2, the probability �P���; P��0�� that
a shower has a �2

CES less than the observed value was
calculated for the five nonconversion shower candidates.
Calculated values are given in Table I.

In event A both showers are single clusters with a small
�2

CES, more consistent with originating from photons than
from �0’s. In event B shower B1 also has a very low �2

CES,
while shower B2 is a photon conversion and the �2

CES

method cannot be used. Two clusters in the CES are
separated in �, but not in �, as expected for a conversion.
The sum of the two track momenta is 5:40 GeV=c, and the

calorimeter energy is 5:45� 0:35 GeV, so if there were a
second photon from a �0 or � it would have E� <
0:55 GeV (95% C.L.), with a probability <10% that a
�0 or � decay would have such an energy asymmetry.
Also, no additional shower is observed. Therefore events A
and B clearly favor the �� hypothesis, with three narrow
single showers and one photon conversion without an
accompanying shower. We cannot give an unbiased value
for the �0�0 background, since this study was done a
posteriori. In event C, one shower (C1) has a very large
�2

CES (only 2% of photon showers have a larger value), and
the other shower (C2) has NCES � 2. Both favor the hy-
pothesis that it is a �0�0 event. A likelihood ratio calcu-
lation, using only the NCES and �2

CES distributions, favors
the �0�0 hypothesis over the �� hypothesis by a factor of
4. For one event in three candidates to be �0�0 is compat-
ible with the theoretical estimate [7] (about 1=5).

In conclusion, we have observed three candidate events
for exclusive ��, �0�0, or �� production with an ex-
pected background of 0:09� 0:04 events. The probability
to observe three or more events when 0:09� 0:04 are
expected from other processes is 1:7� 10�4, correspond-
ing to a statistical significance of 3:7�. Though two of the
candidates are most likely to arise from �� production, the
�0�0=�� hypotheses cannot be excluded. Therefore we
report a 95% C.L. upper limit on the exclusive �� produc-
tion cross section (E�T > 5 GeV, j��j< 1:0) of 410 fb,
approximately a factor of 10 higher than the prediction
[3]. We note that the prediction of Ref. [3] of 36�72

�24 fb
would correspond to 0:8�1:6

�0:5 events, compatible with our
observations. This result may be used to constrain calcu-
lations of exclusive Higgs boson production at the LHC; it
disfavors the highest predictions.
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